
Home Midterm Checkpoint Final Report

Project Proposal
Pawan Medidi, Anna Zhao, Simon Luong, Jacob Zeigler, Suhel Keswani

Introduction/Background
Over the last decade as social media has become increasingly developed, so has the
world of making bots within them. They have become increasingly complex, varied, and
abundant, and their volume and influence has sparked international conversation. So, our
team thought it would be interesting to classify whether a comment on a social media
platform is a human or a bot.

Dataset Description
TwiBot-20, developed at Washington University, includes verified human users and
various bots, comprising approximately 230K accounts. This dataset encompasses
complete post histories and following relationships. For each user, it contains profile
information, the 200 most recent tweets, 20 random neighbors/followers, and a bot status
indicator. Currently, traditional bot detection methods have proven inconclusive in this
dataset.

Dataset link: TwiBot-20 (We have the full data)

https://github.gatech.edu/pages/pmedidi3/CS4641Project/index.html
https://github.gatech.edu/pages/pmedidi3/CS4641Project/midterm_checkpoint.html
https://github.gatech.edu/pages/pmedidi3/CS4641Project/final_report.html
https://github.com/BunsenFeng/TwiBot-20/tree/main

Literature Review
As machine learning advances, numerous studies have emerged on bot detection, each
with unique methodologies. Prior reviews highlight that models based on random forests,
support vector machines, and convolutional neural networks excel in detecting Twitter
bots. Feed Forward Neural Networks, support vector machines, gradient boosting, and
multinomial naive Bayes are effective against spam bots. [2] Ongoing research aims to
enhance deep learning methods by integrating the best features of existing models to
improve text feature utilization and anomaly detection. [3] One study using similar
methods to our projected ones looks at how detecting twitter bots can be done more
effectively with reduced features finding that only 5 features (number of tweets, followers,
mutuals, likes, and lists included) was effective for detecting bots compared to a full
feature larger set.[1]

Problem Definition
Problem: Social media platforms are increasingly filled with bots generating vast amounts
of content. These bots range from simple spambots to sophisticated conversational bots
that engage in harmful activities. Their ability to influence public opinion, spread
misinformation, and undermine genuine user interactions poses significant risks.

Motivation: Identifying and categorizing whether a comment is a bot can mitigate the
spread of false information, preserve the integrity of social media conversations, and
protect public opinion and democratic processes from manipulation.

Solution: We propose a Bot Comment Classification Analysis system using machine
learning and natural language processing to identify and classify whether a comment is a
human or bot based on their commenting styles. This system will analyze linguistic
patterns, posting behaviors, and engagement metrics to distinguish humans from bots,
and provide real-time detection to mitigate bot activity. This approach aims to enhance the
understanding of bot behavior and contribute to a more trustworthy social media
environment.

Methods
We will utilize Scikit-Learn and TensorFlow libraries. Our preprocessing methods include
lemmatization, tokenization, removing non-alphanumeric characters, and Word2Vec for
feature extraction. For supervised learning, we will employ XGBoost, Random Forest,
Decision Trees, and K-Nearest Neighbors.

We aim to use the following metrics:

Accuracy: (Correct Classifications) / (Total Classifications)

Confusion Matrix: contains true positives, false positives, true negatives, and false
negatives for each class.

Precision: (True positives) / (Total predicted positives)

Recall: (True positives) / (All actual positives)

F1 Score: 2 * (Precision * Recall) / (Precision + Recall)

We aim to achieve 75-85% accuracy, precision, and recall, balancing these metrics to
optimize model performance.

Potential Results
We plan to start predicting whether a comment is human or bot based on historical data.
Once we can do this reliably, we will gather more current data from this year, similar to our
reference dataset, and predict the results for this year's comments. This will enable us to
validate our model's accuracy with recent data and ensure its relevance in detecting
contemporary bot behaviors.

Gantt Chart
List each member’s planned responsibilities for the entirety of the project.

Contribution Table

Name Proposal Contributions

Anna Introduction/Background, Literature Review, Dataset Description

Pawan Problem Definition, Methods

Simon Methods

Suhel Potential Results and Discussion

Jacob Potential Results and Discussion, Gantt Chart, GitHub Repository

References
[1] J. V. Fonseca Abreu, C. Ghedini Ralha and J. J. Costa Gondim, "Twitter Bot Detection
with Reduced Feature Set," 2020 IEEE International Conference on Intelligence and
Security Informatics (ISI), Arlington, VA, USA, 2020, pp. 1-6, doi:
10.1109/ISI49825.2020.9280525.

[2] M. Aljabri, R. Zagrouba, A. Shaahid, F. Alnasser, A. Saleh, and D. M. Alomari,
“Machine learning-based social media bot detection: a comprehensive literature review,”
Social Network Analysis and Mining, vol. 13, no. 1, Jan. 2023, doi:
https://doi.org/10.1007/s13278-022-01020-5.

[3] K. Hayawi, S. Saha, M. M. Masud, S. S. Mathew, and M. Kaosar, “Social media bot
detection with deep learning methods: a systematic review,” Neural Computing and
Applications, vol. 35, Mar. 2023, doi: https://doi.org/10.1007/s00521-023-08352-z.

Home Midterm Checkpoint Final Report

Midterm Checkpoint

Results and Discussion

MobileBERT Embeddings and Data Processing
We processed the text data using MobileBERT, extracting embeddings and normalizing
them. The final DataFrame (final_df) contains 17161 rows and 515 columns, with
each row representing a tweet and its associated embeddings. We use 511 different
features extracted from the text content of each tweet. An important thing to note is that
right now we truncate each tweet at 127 characters; using all of the text could improve
results.

XGBoost Classifier

Error Encountered: We faced an issue loading the XGBoost library due to the
missing OpenMP runtime on the system.

Next Steps: Resolve the issue by installing the OpenMP library and reattempt running
the XGBoost model. This step is crucial for leveraging the power of gradient boosting
for classification.

KNN Classifier

Results:

Accuracy: 0.785

https://github.gatech.edu/pages/pmedidi3/CS4641Project/index.html
https://github.gatech.edu/pages/pmedidi3/CS4641Project/midterm_checkpoint.html
https://github.gatech.edu/pages/pmedidi3/CS4641Project/final_report.html

Precision: 0.100

Recall: 0.003

F1 Score: 0.005

Visualization: The accuracy vs. number of neighbors plot indicates how model
performance changes with different values of k. The best accuracy was achieved with
14 neighbors.

Discussion

Justification of Results:

High accuracy and low precision; low F1 score can be attributed to class imbalance,
with a high majority of human tweets. The KNN model cannot capture the complexity
of text data with high sentiment and is likely overfitting the data.

Performance Analysis: The KNN model achieved an accuracy of 78.5%, which is

fairly good. However, the precision, recall, and F1 scores are very low. This suggests
that while the model correctly classifies a significant number of tweets overall, it
struggles to correctly identify and distinguish between the two classes (human vs. bot).

Reasoning: The low precision and recall indicate that the model is not effectively
capturing the nuances in the data that differentiate bots from humans. KNN might not
be the best fit for this task due to the high dimensionality of the embeddings and the
nature of the data.

Visuals

13630 human data points and 3531 bot data points.

So in reality, we have accuracies where our lowest is 78.5% and our highest is 79.46%.

Next Steps

Model Optimization: Continue tuning hyperparameters for KNN to see if
performance can be improved.

Alternative Models: Explore other models such as SVM, Random Forest, or neural
networks which might handle the complexity of the data better.

Feature Engineering: Perform further feature engineering to better capture the
distinguishing features between human and bot tweets.

Conclusion
KNN Classifier: While achieving a decent accuracy, the KNN model needs
improvement in precision and recall.

XGBoost Classifier: Resolving the dependency issue is crucial to evaluating its
performance.

Neural Network: Further evaluation and fine-tuning are necessary to validate the
model's effectiveness for energy prediction.

Overall Next Steps

Resolve XGBoost Issues: Install the necessary libraries and re-evaluate the model.

Optimize KNN and Explore Alternatives: Continue hyperparameter tuning and
explore other classification models.

Fine-tune Neural Network: Ensure all evaluation metrics are captured and improve
model performance.

These steps will help in achieving a more accurate and reliable classification of tweets
and better energy consumption predictions.

Why We Use These Models

XGBoost

Handles Imbalanced Data: XGBoost can manage class imbalance effectively
through weight adjustments and custom loss functions, ensuring better performance
in identifying minority classes.

Captures Complex Relationships: With its boosting technique, XGBoost excels at
capturing complex, non-linear relationships in high-dimensional data, making it
suitable for nuanced differences in text embeddings.

KNN (K-Nearest Neighbors)

Simple and Intuitive: KNN is straightforward to implement and understand, making
it a great starting point for initial model development and benchmarking.

Effective Local Pattern Recognition: By classifying based on the closest
neighbors, KNN can effectively identify local patterns and clusters within the data,
which can be useful for distinguishing similar comments.

Midterm Contributions

Name Midterm Contributions

Pawan
Medidi

Coded the GitHub Pages, created the ReadMe and added all info, and met
with the TA to finalize and discuss changes neeeded.

Anna
Zhao

Initial proposal information, data preprocessing, modeling.

Simon
Luong

Cleaning the dataset, analyzing it, getting features, setting up the KNN, and
running that model on our data.

Suhel
Keswani

Making interpreting our results, and making/getting all the visuals/statistics
for the data we used and the results we got from that.

Jacob
Zeigler

Helped with proposal.

Home Midterm Checkpoint Final Report

Final Report
Pawan Medidi, Anna Zhao, Simon Luong, Jacob Zeigler, Suhel Keswani

Introduction/Background
Over the last decade as social media has become increasingly developed, so has the
world of making bots within them. They have become increasingly complex, varied, and
abundant, and their volume and influence have sparked a lot of conversation. Our team
aims to classify whether a comment on a social media platform is a human or a bot.

Literature Review

As machine learning advances, numerous studies have emerged on bot detection, each
with unique methodologies. Prior reviews highlight that models based on random forests,
support vector machines, and convolutional neural networks excel in detecting Twitter
bots. Feed Forward Neural Networks, support vector machines, gradient boosting, and
multinomial naive Bayes are effective against spam bots. Ongoing research aims to
enhance deep learning methods by integrating the best features of existing models to
improve text feature utilization and anomaly detection. One study using similar methods to
our projected ones looks at how detecting twitter bots can be done more effectively with
reduced features finding that only 5 features (number of tweets, followers, mutuals, likes,
and lists included) was effective for detecting bots compared to a full feature larger set.

Dataset Description

We utilized the TwiBot-20 dataset, developed at Washington University, which includes
verified human users and various bots, comprising approximately 230K accounts. This
dataset encompasses complete post histories and following relationships. For each user, it

https://github.gatech.edu/pages/pmedidi3/CS4641Project/index.html
https://github.gatech.edu/pages/pmedidi3/CS4641Project/midterm_checkpoint.html
https://github.gatech.edu/pages/pmedidi3/CS4641Project/final_report.html

contains profile information, the 200 most recent tweets, 20 random neighbors/followers,
and a bot status indicator. Currently, traditional bot detection methods have proven
inconclusive in this dataset.

Dataset link: TwiBot-20 (We have the full data)

Problem Definition
Problem: Social media platforms are increasingly filled with bots generating vast amounts
of content. These bots range from simple spambots to sophisticated conversational bots
that engage in harmful activities. Their ability to influence public opinion, spread
misinformation, and undermine genuine user interactions poses significant risks.

Motivation: Identifying and categorizing whether a comment is a bot can mitigate the
spread of false information, preserve the integrity of social media conversations, and
protect public opinion and democratic processes from manipulation.

Solution: We propose a Bot Comment Classification Analysis system using machine
learning and natural language processing to identify and classify whether a comment is a
human or bot based on their commenting styles. This system will analyze linguistic
patterns, posting behaviors, and engagement metrics to distinguish humans from bots,
and provide real-time detection to mitigate bot activity. This approach aims to enhance the
understanding of bot behavior and contribute to a more trustworthy social media
environment.

Methods
We utilized the TwiBot-20 dataset, developed at Washington University, which includes
verified human users and various bots, comprising approximately 230K accounts. For this
project, we focused on the following machine learning algorithms: K-Nearest Neighbors
(KNN), Random Forest, and a Neural Network model.

https://github.com/BunsenFeng/TwiBot-20/tree/main

Our preprocessing methods included:

Tokenization

Lemmatization

Removing non-alphanumeric characters

Truncating text to a fixed length

Using MobileBERT for feature extraction

We utilized Scikit-Learn and TensorFlow libraries for model implementation. Our
evaluation metrics included accuracy, precision, recall, and F1 score.

Results and Discussion

K-Nearest Neighbors (KNN) Classifier

Accuracy: 0.785

Precision: 0.100

Recall: 0.003

F1 Score: 0.005

The KNN model achieved an accuracy of 78.5%, which is fairly good. However, the
precision, recall, and F1 scores are very low. This suggests that while the model correctly
classifies a significant number of tweets overall, it struggles to correctly identify and
distinguish between the two classes (human vs. bot).

Random Forest Classifier

Accuracy: 0.790

Precision: 0.624

Recall: 0.790

F1 Score: 0.697

The Random Forest model showed improved performance with an accuracy of 79.0%,
precision of 62.4%, recall of 79.0%, and an F1 score of 69.7%. This indicates that the
model is better at distinguishing between humans and bots compared to KNN.

Neural Network Model

Accuracy: 0.795

Precision: 0.632

Recall: 0.795

F1 Score: 0.704

The Neural Network model achieved the highest accuracy at 79.5%, with a precision of
63.2%, recall of 79.5%, and an F1 score of 70.4%. This indicates that neural networks,
with their capacity to learn complex patterns, performed the best among the models we
tested.

Comparison of Models

Model Accuracy Precision Recall F1 Score

KNN 0.785 0.100 0.003 0.005

Random Forest 0.790 0.624 0.790 0.697

Neural Network 0.795 0.632 0.795 0.704

From our analysis, the Neural Network model showed the best performance, followed by
the Random Forest model. The KNN model, while simple and intuitive, did not perform
well for this classification task.

Next Steps

Further optimize hyperparameters for the Random Forest and Neural Network models
to potentially improve their performance.

Explore other advanced models like Transformers which might offer better performance
in handling text data.

Consider using more sophisticated feature engineering techniques to enhance the
model's ability to distinguish between human and bot comments.

Gantt Chart

Contribution Table

Name Final Contributions

Anna Zhao Introduction/Background, Dataset Description, Data Preprocessing

Pawan Medidi Problem Definition, Methods, GitHub Repository

Simon Luong Model Implementation, Data Analysis, Data preprocessing

Suhel Keswani Results and Discussion, Visualizations

Jacob Zeigler Slides setup and Visualizations

References
[1] J. V. Fonseca Abreu, C. Ghedini Ralha and J. J. Costa Gondim, "Twitter Bot Detection
with Reduced Feature Set," 2020 IEEE International Conference on Intelligence and
Security Informatics (ISI), Arlington, VA, USA, 2020, pp. 1-6, doi:
10.1109/ISI49825.2020.9280525.

[2] M. Aljabri, R. Zagrouba, A. Shaahid, F. Alnasser, A. Saleh, and D. M. Alomari,
“Machine learning-based social media bot detection: a comprehensive literature review,”
Social Network Analysis and Mining, vol. 13, no. 1, Jan. 2023, doi:
https://doi.org/10.1007/s13278-022-01020-5.

[3] K. Hayawi, S. Saha, M. M. Masud, S. S. Mathew, and M. Kaosar, “Social media bot
detection with deep learning methods: a systematic review,” Neural Computing and
Applications, vol. 35, Mar. 2023, doi: https://doi.org/10.1007/s00521-023-08352-z.

