
A SCOMP Peripheral for Hobby Servo Motor Positioning
and Oscillation

Suhel Keswani

Submitted
April 23, 2024



Introduction
This document discusses the functionality and design of the SCOMP Peripheral for Hobby Servos. This

peripheral controls servos with appropriate pulse width modulation and provides a layer of abstraction for

programmers interested in positioning and autonomous oscillation. An intuitive API, degree granularity of

positioning, and independent servo control were prioritized due to customer requirements. By using a

Gantt chart and assigning individual tasks to team members across weeks, all proposed features were

implemented successfully.

Device Functionality

Capabilities

Each servo can be controlled using two modes -- one in which the position of a servo is set, and one in

which the position of the servo oscillates from 0 to 180 degrees. Across both modes, pulses are

continuously generated to set and hold servo positions appropriately.

The end-user is able to control each of the servos across modes independently and in tandem with one

another. Additionally, hobby servos are always safely controlled, as hardware level mechanisms prevent

the generation of pulses under 6 ms or over 24 ms.

Application Platform Interface

To send instructions to the peripheral, programmers simply use the OUT instruction to write signed

integer values to the peripheral. Position register types interpret values as degrees from 0 to 180; note that

values under 0 are interpreted as 0, and values over 180 are interpreted as 180. Oscillation register types

interpret values as an amount of oscillations to perform, where an oscillation represents one iteration of

moving to 0 degrees, holding this position for approximately 1 second, moving to 180 degrees, and then

holding this position for at least 1 second. Oscillation values under 1 are interpreted as 1. Note that new



instructions to the peripheral will always override previous/current instructions as needed (e.g. an

incoming position instruction for servo 4 will overwrite any existing oscillation of servo 4).

table 1

Output RegisterMap of SCOMP Peripheral For Hobby
Servo Motor Positioning And Oscillation

I/O
Addr.

Servo
Pulse

Register
Type

B
15

B
14

B
13

B
12

B
11

B
10

B
09

B
08

B
07

B
06

B
05

B
04

B
03

B
02

B
01

B
00

0x50 0 position position in degrees

0x51 0 oscillation number of full range oscillations

0x52 1 position position in degrees

0x53 1 oscillation number of full range oscillations

0x54 2 position position in degrees

0x55 2 oscillation number of full range oscillations

0x56 3 position position in degrees

0x57 3 oscillation number of full range oscillations

Design Decisions and Implementation
In the design of this peripheral, programmer utility and usability were prioritized. Degree granularity,

independent control, and automation were deemed to be the most necessary and versatile features. In

order to achieve precise pulse width modulation for degree granularity, a faster, 100kHZ clock is used. By

assigning a pair of I/O addresses for each pulse output, simultaneous and independent control across

modes is allowed across the four servos. To support this, the peripheral requires eight unique chip select

inputs from an appropriately fitted I/O decoder to control four distinct pulse generators capable of

producing pulses for both position and oscillation modes.



Figure 1. Block diagram of the SCOMP Peripheral for Hobby Servos. The 100kHz clock and chip select

inputs are shown.

Figure 2. Block diagram showing the four internal pulse generators within the SCOMP Peripheral for

Hobby Servos.



Conclusions
By providing programmers with precise positioning and automatic oscillation in an effective API, the

SCOMP Peripheral for Hobby Servos creates easy and effective control of four servos. While automatic

oscillation functionality is useful, as it simplifies programming while freeing up the processor to perform

other tasks, customization can provide more value. Additional desirable functionality for autonomous

oscillation might include an option for infinite oscillation, configurable oscillation positions, and/or

configurable delays between movements. In order to maintain a usable API, such parameters can be

written to the peripheral separately across I/O addresses. Additionally, improvements to the existing

design that better facilitate future development could have been made. Namely, the use of a mode input

vector signal alongside four chip selects can allow for individual servo mode control without requiring a

separate chip select input for each servo and mode.


